Report Algoritmo A-Star

Confronto tra algoritmo sequenziale e parallelo
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Obiettivo Principale

Il progetto ha come obiettivo principale l'implementazione e il confronto delle prestazioni
dell'algoritmo A* (A-Star) per il calcolo del percorso minimo in un grafo bidimensionale, sia sul lato
host (CPU) che sul lato device (GPU) utilizzando CUDA. L'intento & di:

1.

Confrontare le Prestazioni: Valutare il miglioramento delle prestazioni ottenuto attraverso la
parallelizzazione dell'algoritmo A* sulla GPU rispetto all'implementazione sequenziale sulla
CPU.

Analizzare le Differenze Implementative: Esplorare le sfide e le soluzioni nell'adattare
I'algoritmo A* per I'esecuzione parallela sulla GPU, inclusa la gestione delle strutture dati e
I'ottimizzazione delle operazioni per I'ambiente CUDA.

Dimostrare la Correttezza dell'Algoritmo Parallelo: Assicurarsi che I'implementazione su
GPU fornisca risultati corretti e consistenti con I'algoritmo sequenziale, garantendo che i
percorsi minimi trovati siano equivalenti.

Valutare lo Speedup e la Scalabilita: Misurare lo speedup ottenuto con l'implementazione
parallela su diversi tipi di grafo e dimensioni, analizzando come il tempo di esecuzione varia
al variare della dimensione del problema.

Applicare Diversi Tipi di Euristiche: Implementare e confrontare diverse funzioni euristiche
all'interno dell'algoritmo A*, valutando l'impatto sulle prestazioni sia in ambiente
sequenziale che parallelo.

L'algoritmo A* & ampiamente utilizzato in problemi di pathfinding e navigazione, come nella
robotica, nei videogiochi e nei sistemi di navigazione GPS. Tuttavia, su grafi di grandi dimensioni o in
applicazioni che richiedono calcoli in tempo reale, |'esecuzione sequenziale dell'algoritmo pud
risultare inefficiente.

La parallelizzazione dell'algoritmo A* su GPU offre la possibilita di sfruttare la potenza di calcolo
parallela, riducendo significativamente i tempi di esecuzione e permettendo di affrontare problemi
piu complessi o di ottenere risposte in tempi piu rapidi.



Rappresentazione del Grafo sul Lato Host (CPU)

Nodo:

e id: Identificatore unico del nodo, calcolato come id = row * cols + col.

e edges[4]: Array di puntatori agli archi uscenti dal nodo, corrispondenti
alle possibili direzioni (sopra, sotto, sinistra, destra). Se non esiste un
arco in una certa direzione, il puntatore & NULL.

i
Edge* edges[i4];

Arco:

o from e to: Puntatori ai nodi di partenza e di arrivo dell'arco. .
* to:
e weight: Peso associato all'arco, generato casualmente tra 1 e 10. weigll1t;

Graph {

e rows e cols: Dimensioni della griglia (numero di righe e colonne). ,
g .g ( ) ) g. ) ) rows, cols;

e nodes: Puntatore a un array bidimensionale di nodi, organizzato come Nodex* nodes;
nodes[rows][cols]. }

Creazione del grafo:

Tramite la funzione createGraph viene allocata memoria per una griglia bidimensionale di nodi pari a
rows * cols. Ogni nodo viene poi inizializzato con un id univoco. Successivamente tramite la funzione
addEdges si itera su ogni nodo della griglia e per ogni una delle quattro direzioni si decide se
aggiungere un arco verso un nodo adiacente. Viene utilizzata una funzione probabilistica per
determinare la presenza o meno degli archi. Quando un nuovo arco viene aggiunto la funzione
addEdge crea un nuovo arco assegnandogli un peso che varia in maniera casuale da 1 a 10.

Rappresentazione del Grafo sul Lato Device (GPU)

Nodo e arco:

e id: Identificatore unico del nodo, come nella rappresentazione host.
o edges[4]: Array di interi che rappresenta gli ID dei nodi adiacenti nelle
guattro direzioni. Se non esiste un arco in una certa direzione, il valore &

-1.
o weights[4]: Array di interi che contiene i pesi degli archi corrispondenti weights[d];
in edges
Grafo: GraphGPU {
rows, cols;
e rows e cols: Dimensioni della griglia, come nella rappresentazione host.  § NodeGPU* nodes;
e nodes: Puntatore a un array lineare di NodeGPU, di dimensione rows * '
cols.

Creazione del grafo:

La funzione copyGraphToGPU si occupa di copiare e trasformare la rappresentazione del grafo host a
guella device. Tale operazione viene effettuata, allocando memoria sul device e convertendo i nodi
dalla struttura host a quella device.



Struttura dati AS_Data per algoritmo A-Star (GPU):

La struttura AS Data ricopre un ruolo fondamentale per il calcolo del percorso minimo tramite
algoritmo A-Star in ambiente cuda. Tale struttura ha il compito di tener traccia delle informazioni
legate ai nodi da visitare e visitati. Inoltre, permette di salvare le informazioni legate al gCost e fCost
per il calcolo del percorso minimo.

OpenlList
e heap: array contenente i nodi di una determinata | OpenList {
openlist ordinati in base al proprio fCost * heap;
¢ hashingTable: array contenente la lista dei nodi # hashingTable;
attualmente presenti nel heap. Usata per verificare la * fCost;
presenza di un nodo nel heap in maniera veloce size;

tramite una funzione di hashing.
e fCost: array dei costi di ogni Nodo
e size: numero di elementi nella openList

ClosedList:
e idNode: id del nodo gia visitato.
AS_Data

e gCost: array di tutti i gCost dei nodi.

* predecessor;

e fCost: array di tutti gli fCost dei nodi. OpenlList* openlList_queues;
e Predecessor: array dei nodi per calcolare il percorso ClosedList* closedList;
minimo. }-
e openlist_queues: array di OpenList, una per ogni
thread.

o ClosedList: array dei nodi gia visitati.

Implementazione e funzionamento algoritmo A-Star

Funzionamento Algoritmo lato Host (CPU):

L'algoritmo inizializza i costi associati a ciascun nodo. Il costo dal nodo iniziale al nodo stesso,
denotato come g(n), € impostato a zero, mentre per tutti gli altri nodi e inizialmente considerato
infinito. La funzione di valutazione f{n), che combina il costo accumulato g(n) e una stima del costo
rimanente h(n) (funzione euristica), & calcolata per il nodo iniziale.

Per gestire i nodi da esplorare, viene utilizzata una open list implementata come una coda di priorita
basata su un min-heap. Questa struttura permette di estrarre rapidamente il nodo con il costo
f(n)minimo. All'inizio, il nodo iniziale viene inserito nella open list.

Durante I'esecuzione, I'algoritmo entra in un ciclo in cui estrae il nodo con il valore f(n) piu basso
dalla open list. Se questo nodo ¢ il nodo obiettivo, |'algoritmo termina e il percorso minimo viene
ricostruito risalendo I'array dei predecessori. Altrimenti, il nodo viene aggiunto alla closed list per
evitare di riesaminarlo.



Per ciascun nodo adiacente al nodo corrente, I'algoritmo calcola un costo provvisorio
tentativeGScore sommando il costo gfn) del nodo corrente al costo dell'arco che conduce al nodo
adiacente. Se questo costo provvisorio € inferiore al costo g{n) precedentemente registrato per il
nodo adiacente, vengono aggiornati il costo g(n), il valore f(n) e il predecessore del nodo adiacente.
Se il nodo adiacente non é gia presente nella open list, viene inserito in essa.

Questo processo continua iterativamente, espandendo i nodi in ordine di priorita basata sul valore
f(n), fino a quando il nodo obiettivo non viene raggiunto o la open list diventa vuota, indicando che
non esiste un percorso possibile.

Funzionamento Algoritmo lato Device (GPU):

L'implementazione dell'algoritmo A* sul lato device presenta sfide significative a causa della natura
parallela delle GPU Per superare questa sfida, |'algoritmo € stato riprogettato per sfruttare il
parallelismo offerto dalla GPU, adattando le strutture dati e le modalita di accesso alla memoria.

Invece di utilizzare una singola open list, come avviene sul lato host, I'algoritmo su GPU impiega
multiple open list, una per ciascun thread. Questo approccio riduce i conflitti di accesso e la necessita
di sincronizzazione tra i thread, consentendo una gestione piu efficiente delle operazioni in parallelo.

All'inizio dell'algoritmo, vengono inizializzati gli array globali per i costi g(n) e f(n), assegnando a tutti
i nodi un costo infinito, tranne che per il nodo iniziale, il cui costo gfn) € zero. Il nodo iniziale viene
inserito nella open list del primo thread.

L'algoritmo esegue un kernel principale, in cui ogni thread opera sulla propria open list. Ogni thread
estrae il nodo con il valore f{n) minimo dalla sua open list. Se il nodo estratto corrisponde al nodo
obiettivo, il thread imposta un flag globale per indicare che il percorso & stato trovato e I'algoritmo
termina.

Per ciascun nodo adiacente al nodo corrente, il thread verifica se il nodo é gia presente nella closed
list. Se non lo &, calcola un costo provvisorio tentativeGCost e utilizza operazioni atomiche, come
atomicMin, per aggiornare in modo sicuro il costo gfn) globale del nodo adiacente. Se il costo viene
aggiornato, vengono anche aggiornati il valore f(n) e il predecessore del nodo adiacente. Il nodo
adiacente viene quindi inserito nella open list del thread, utilizzando una tabella di hashing e
I’operazione atomica atomicCAS per evitare duplicazioni.

Le operazioni atomiche sono essenziali per garantire la coerenza dei dati quando piu thread
potrebbero tentare di aggiornare gli stessi valori simultaneamente. Questo meccanismo evita race
condition e garantisce che il costo minimo venga sempre registrato per ciascun nodo.

L'uso di multiple open list e tabelle di hashing consente di distribuire il carico di lavoro tra i thread e
di ridurre la necessita di sincronizzazione.

Una volta che il nodo obiettivo e stato raggiunto, il percorso minimo puo essere ricostruito risalendo
I'array dei predecessori, come avviene nella versione host.



Implementazione Algoritmo A-Star (GPU)

Utilizzo di code parallele:

Un aspetto essenziale dell'implementazione su GPU dell'algoritmo A* ¢ la scelta del numero di code
parallele (nQueues), che viene determinato dividendo il numero totale di nodi per un fattore k. Il
fattore k rappresenta il numero di elementi che ogni coda puo contenere. Selezionare il valore
ottimale di k € necessario per bilanciare il carico di lavoro tra i thread della GPU e massimizzare le
prestazioni.

Impatto del Fattore k sulle Prestazioni
Quando k & Grande (Poche Code, Molti Nodi per Coda):

Vantaggi:

Ridotto Overhead di Sincronizzazione: Con un minor numero di code, c'@ meno necessita di
sincronizzazione tra i thread, poiché vengono accedute contemporaneamente meno strutture
dati.

Gestione Semplificata: Gestire un numero minore di code pud semplificare il codice e ridurre
|'overhead associato alla gestione delle code.

Svantaggi:

Sottoutilizzo del Parallelismo: Avere meno code significa che un numero minore di thread &
attivamente impegnato nell'elaborazione dei nodi, il che puo portare a un sottoutilizzo delle
capacita di elaborazione parallela della GPU.

Aumento del Carico Computazionale per Thread: Ogni coda contiene piu nodi, aumentando il
carico computazionale sui thread responsabili di quelle code.

Quando k é Piccolo (Molte Code, Pochi Nodi per Coda):

e Vantaggi:

Massimizzazione del Parallelismo: Aumentando il numero di code, pil thread possono
partecipare al calcolo, migliorando I'utilizzo delle risorse della GPU.

Riduzione del Carico per Thread: Con meno nodi per coda, ogni thread ha meno dati da
elaborare, il che puo accelerare le computazioni individuali.

e Svantaggi:

Aumento dell'Overhead di Sincronizzazione: Pili thread che accedono a risorse condivise
possono portare a maggiore contesa e richiedere pil sincronizzazione, introducendo latenza.

Rallentamenti dati dalle Operazioni Atomiche: Un numero elevato di thread che eseguono
operazioni atomiche su strutture dati condivise puo rallentare le prestazioni a causa
dell'aumentata contesa.



Bilanciamento del Carico di Lavoro

La scelta del valore ottimale di k comporta il bilanciamento tra la massimizzazione del parallelismo e
la minimizzazione dell'overhead di sincronizzazione. L'obiettivo e trovare un valore che distribuisca
uniformemente il carico di lavoro tra i thread della GPU, mantenendo i costi di sincronizzazione
gestibili.

Analisi benchmark per bilanciamento carico di lavoro su una griglia 5000x5000 con punto finale
[4999,4999]

K Grid size Parallel queues Time
8 5000x5000 3125000 5 secondi
64 5000x5000 390625 2.72 secondi
256 5000x5000 97656 2.42 secondi
1200 5000x5000 20833 2.39 secondi
2656 5000x5000 9412 2.39 secondi
4096 5000x5000 3051 2.39 secondi
8192 5000x5000 3051 2.59 secondi
16384 5000x5000 1525 4.32 secondi
32250 5000x5000 775 7.99 secondi

Performance Analysis: Time vs K
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Accesso alle code parallele:

Dato che ogni thread & associato a una specifica coda parallela basata sul suo identificatore (indice
del thread). Cio consente di mappare i thread alle code in modo deterministico, evitando conflitti tra
thread che accedono alla stessa coda.

L'indice della coda a cui un thread deve accedere ¢ calcolato utilizzando l'indice globale del thread
(idx) e il numero totale di code parallele (nQueues):

idx = blockldx.x * blockDim.x + threadldx.x;
hashIndexIdx = idx % n(

currentNodeldx = popFromOpenList( a->openList_queues[hashIndexIdx]);

Verifica nodi esistenti

Nell'implementazione dell'algoritmo A* su GPU, € fondamentale evitare che lo stesso nodo venga
inserito piu volte nella coda di priorita (open list). La verifica della presenza di un nodo nella coda
viene effettuata utilizzando una tabella di hashing (hashing table) associata a ciascuna coda
parallela.

L'indice nella hashing table viene calcolato utilizzando una funzione di hashing semplice, tramite il
modulo dell'ID del nodo con la dimensione della tabella.

modHash = (totalNodes / nQueues) |;

a.

hashNodeIndex = neighborNodeldx % modHash;

Si utilizza poi I'operazione atomica atomicCAS (Compare And Swap) per verificare e inserire il nodo.

hashNodeIndex = neighborNodeIdx % modHash;
if (atomicCAS(&data->openList_queues[neighborHashIndex].hashingTable[hashNodeIndex], -1, neighborNedeldx) == -1)
pushToOpenList(&data—>openList_queues[neighborHashIndex], neighborNodeldx, newFcost);

Approccio dinamico nella scelta del numero di blocchi

Nell'implementazione dell'algoritmo A* su GPU, la scelta del numero di thread per blocco e del
numero di blocchi per grid € un fattore cruciale che influenza significativamente le prestazioni
dell'algoritmo. Questa scelta deve essere adattabile e dinamica, variando in base alla dimensione del
grafo, ossia al numero totale di nodi. Un approccio dinamico garantisce un utilizzo efficiente delle
risorse della GPU, indipendentemente dalle dimensioni del problema da risolvere

=s + threadPBlock - 1) / threadPBlock;

dim3 threadsPerBlock(threadPBlock);
dim3 numBlocks((nQueues + threadsPerBlock.x - 1) / threadsPerBlock.x);

L'algoritmo si adatta automaticamente a grafi di qualsiasi dimensione senza necessita di modificare
manualmente i parametri di lancio dei kernel. Cosi facendo si garantisce che un numero adeguato di
thread sia lanciato per sfruttare al massimo le capacita della GPU, evitando sia la saturazione che il
sottoutilizzo



Test Case

Hardware:
Graphics Card: Nvidia RTX 3070

Architettura GPU: NVIDIA Ampere

Compute Capability: 8.6
Numero di CUDA Cores: 5.888

Numero di Streaming Multiprocessors (SMs): 46

Tipo di Memoria: 8 GB GDDR6

Test per numero di nodi crescenti
Seed : 1732652188 - Edge 100%

K Start Goal Grid Time CPU Time GPU | SpeedUp
4 [0,0] [49,49] 50x50 0.0007821 0.0289075 0.025
8 [0,0] [99,99] 100x100 0.0030995 0.0529844 0.06
16 [0,0] [199,199] 200x200 0.0122685 0.0981872 0.12
30 [0,0] [399,399] 400x400 0.058428 0.184969 0.27
54 [0,0] [799,799] 800x800 0.318093 0.378232 0.83
256 [0,0] [1999,1999] 2000x2000 3.70401 0.915175 4.06
1200 [0,0] [4999,4999] 5000x5000 56.6827 2.391204 23.68
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Osservazione:

Grid Size (NxN)

10°

L'algoritmo A-Star parallelo rispetto al sequenziale tende ad essere piu veloce all’aumentare
del numero di nodi coinvolti nel calcolo del percorso minimo. Si nota, quindi, il decremento
significativo nei tempi di esecuzione dell’algoritmo parallelo rispetto al sequenziale, che nel

caso di una griglia pari a 5000x5000 risulta essere 23.68 volte piu veloce di quello

sequenziale.




Seed : 1732652188 - Edge 70%

K Start Goal Grid Time CPU Time GPU | SpeedUp

4 [0,0] [49,49] 50x50 0.0008414 0.0290196 0.027

8 [0,0] [99,99] 100x100 0.0029005 0.0516374 0.056

16 [0,0] [199,199] 200x200 0.010653 0.107484 0.1

30 [0,0] [399,399] 400x400 0.0488351 0.183712 0.26

54 [0,0] [799,799] 800x800 0.253115 0.381493 0.66
256 [0,0] [1999,1999] 2000x2000 2.77191 0.946775 2.94
1200 [0,0] [4999,4999] 5000x5000 40.5561 2.4074 16.89
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Osservazione:

Grid Size (NxN)

10°

Si osserva che al decrementare del numero di connessioni e quindi anche al numero di nodi
che probabilmente vengono visitati I’algoritmo sequenziale guadagna dei punti nel calcolo
del percorso minimo. Si nota, inoltre, che se pur c’e un leggero miglioramento dell’algoritmo
sequenziale rispetto al parallelo, quest’ultimo tende ad essere sempre piu veloce con uno

speedup nel caso di una griglia 5000x5000 pari a 16.89 volte quello sequenziale.




Test per le diverse euristiche
Seed : 1732652188 - Edge 70%

Heuristic Grid Time
Manhattan 5000x5000 2.44
Euclidean 5000x5000 2.40
Chebyshev 5000x5000 2.39
Octile 5000x5000 2.44
Hamming 5000x5000 241

Osservazione:

Non si nota nessuna differenza sostanziale nell’utilizzo delle varie funzioni euristiche in ambito
parallelo.

Test per distanze crescenti
Seed : 1732652188 - Edge 100%

Grid Start End Time CPU Time GPU SpeedUp
5000x5000 0,0 10,10 0.0109216 0.0346913 0.29
5000x5000 0,0 100,100 0.0396831 0.0518886 0.76
5000x5000 0,0 200,200 0.0576574 0.10007 0.5
5000x5000 0,0 500,500 0.249433 0.243945 1
5000x5000 0,0 1000,1000 1.37319 0.464296 2.97
5000x5000 0,0 2000,2000 11.277 1.00284 11.2
5000x5000 0,0 4999,4999 56.6827 2.391204 23.68
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Goal (g)
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Si nota che all’aumentare della distanza dal nodo iniziale al nodo di arrivo, il tempo di esecuzione
dell’algoritmo parallelo rispetto a quello sequenziale tende a decrementare. Pertanto, se ne deduce
che il numero di nodi da analizzare ricopre un ruolo fondamentale nel calcolo parallelo rispetto al

sequenziale.
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