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Obiettivo Principale 

Il progetto ha come obiettivo principale l'implementazione e il confronto delle prestazioni 

dell'algoritmo A* (A-Star) per il calcolo del percorso minimo in un grafo bidimensionale, sia sul lato 

host (CPU) che sul lato device (GPU) utilizzando CUDA. L'intento è di: 

1. Confrontare le Prestazioni: Valutare il miglioramento delle prestazioni ottenuto attraverso la 

parallelizzazione dell'algoritmo A* sulla GPU rispetto all'implementazione sequenziale sulla 

CPU. 

2. Analizzare le Differenze Implementative: Esplorare le sfide e le soluzioni nell'adattare 

l'algoritmo A* per l'esecuzione parallela sulla GPU, inclusa la gestione delle strutture dati e 

l'ottimizzazione delle operazioni per l'ambiente CUDA. 

3. Dimostrare la Correttezza dell'Algoritmo Parallelo: Assicurarsi che l'implementazione su 

GPU fornisca risultati corretti e consistenti con l'algoritmo sequenziale, garantendo che i 

percorsi minimi trovati siano equivalenti. 

4. Valutare lo Speedup e la Scalabilità: Misurare lo speedup ottenuto con l'implementazione 

parallela su diversi tipi di grafo e dimensioni, analizzando come il tempo di esecuzione varia 

al variare della dimensione del problema. 

5. Applicare Diversi Tipi di Euristiche: Implementare e confrontare diverse funzioni euristiche 

all'interno dell'algoritmo A*, valutando l'impatto sulle prestazioni sia in ambiente 

sequenziale che parallelo. 

L'algoritmo A* è ampiamente utilizzato in problemi di pathfinding e navigazione, come nella 

robotica, nei videogiochi e nei sistemi di navigazione GPS. Tuttavia, su grafi di grandi dimensioni o in 

applicazioni che richiedono calcoli in tempo reale, l'esecuzione sequenziale dell'algoritmo può 

risultare inefficiente. 

La parallelizzazione dell'algoritmo A* su GPU offre la possibilità di sfruttare la potenza di calcolo 

parallela, riducendo significativamente i tempi di esecuzione e permettendo di affrontare problemi 

più complessi o di ottenere risposte in tempi più rapidi. 

 

  



Rappresentazione del Grafo sul Lato Host (CPU) 

Nodo: 

 id: Identificatore unico del nodo, calcolato come id = row * cols + col. 

 edges[4]: Array di puntatori agli archi uscenti dal nodo, corrispondenti 

alle possibili direzioni (sopra, sotto, sinistra, destra). Se non esiste un 

arco in una certa direzione, il puntatore è NULL. 

Arco: 

 from e to: Puntatori ai nodi di partenza e di arrivo dell'arco. 

 weight: Peso associato all'arco, generato casualmente tra 1 e 10. 

Grafo: 

 rows e cols: Dimensioni della griglia (numero di righe e colonne). 

 nodes: Puntatore a un array bidimensionale di nodi, organizzato come 

nodes[rows][cols]. 

Creazione del grafo: 

Tramite la funzione createGraph viene allocata memoria per una griglia bidimensionale di nodi pari a 

rows * cols. Ogni nodo viene poi inizializzato con un id univoco. Successivamente tramite la funzione 

addEdges si itera su ogni nodo della griglia e per ogni una delle quattro direzioni si decide se 

aggiungere un arco verso un nodo adiacente. Viene utilizzata una funzione probabilistica per 

determinare la presenza o meno degli archi. Quando un nuovo arco viene aggiunto la funzione 

addEdge crea un nuovo arco assegnandogli un peso che varia in maniera casuale da 1 a 10. 

 

Rappresentazione del Grafo sul Lato Device (GPU) 

Nodo e arco: 

 id: Identificatore unico del nodo, come nella rappresentazione host. 

 edges[4]: Array di interi che rappresenta gli ID dei nodi adiacenti nelle 

quattro direzioni. Se non esiste un arco in una certa direzione, il valore è 

-1. 

 weights[4]: Array di interi che contiene i pesi degli archi corrispondenti 

in edges 

Grafo: 

 rows e cols: Dimensioni della griglia, come nella rappresentazione host. 

 nodes: Puntatore a un array lineare di NodeGPU, di dimensione rows * 

cols. 

Creazione del grafo: 

La funzione copyGraphToGPU si occupa di copiare e trasformare la rappresentazione del grafo host a 

quella device. Tale operazione viene effettuata, allocando memoria sul device e convertendo i nodi 

dalla struttura host a quella device. 



Struttura dati AS_Data per algoritmo A-Star (GPU): 

La struttura AS Data ricopre un ruolo fondamentale per il calcolo del percorso minimo tramite 

algoritmo A-Star in ambiente cuda. Tale struttura ha il compito di tener traccia delle informazioni 

legate ai nodi da visitare e visitati. Inoltre, permette di salvare le informazioni legate al gCost e fCost 

per il calcolo del percorso minimo. 

OpenList 

 heap: array contenente i nodi di una determinata 

openList ordinati in base al proprio fCost 

 hashingTable: array contenente la lista dei nodi 

attualmente presenti nel heap. Usata per verificare la 

presenza di un nodo nel heap in maniera veloce 

tramite una funzione di hashing. 

 fCost: array dei costi di ogni Nodo 

 size: numero di elementi nella openList 

ClosedList: 

 idNode: id del nodo già visitato. 

AS_Data 

 gCost: array di tutti i gCost dei nodi. 

 fCost: array di tutti gli fCost dei nodi. 

 Predecessor: array dei nodi per calcolare il percorso 

minimo. 

 openList_queues: array di OpenList, una per ogni 

thread. 

 ClosedList: array dei nodi già visitati. 

 

Implementazione e funzionamento algoritmo A-Star 

Funzionamento Algoritmo lato Host (CPU): 

L'algoritmo inizializza i costi associati a ciascun nodo. Il costo dal nodo iniziale al nodo stesso, 

denotato come g(n), è impostato a zero, mentre per tutti gli altri nodi è inizialmente considerato 

infinito. La funzione di valutazione f(n), che combina il costo accumulato g(n) e una stima del costo 

rimanente h(n) (funzione euristica), è calcolata per il nodo iniziale. 

Per gestire i nodi da esplorare, viene utilizzata una open list implementata come una coda di priorità 

basata su un min-heap. Questa struttura permette di estrarre rapidamente il nodo con il costo 

f(n)minimo. All'inizio, il nodo iniziale viene inserito nella open list. 

Durante l'esecuzione, l'algoritmo entra in un ciclo in cui estrae il nodo con il valore f(n) più basso 

dalla open list. Se questo nodo è il nodo obiettivo, l'algoritmo termina e il percorso minimo viene 

ricostruito risalendo l'array dei predecessori. Altrimenti, il nodo viene aggiunto alla closed list per 

evitare di riesaminarlo. 



Per ciascun nodo adiacente al nodo corrente, l'algoritmo calcola un costo provvisorio 

tentativeGScore sommando il costo g(n) del nodo corrente al costo dell'arco che conduce al nodo 

adiacente. Se questo costo provvisorio è inferiore al costo g(n) precedentemente registrato per il 

nodo adiacente, vengono aggiornati il costo g(n), il valore f(n) e il predecessore del nodo adiacente. 

Se il nodo adiacente non è già presente nella open list, viene inserito in essa. 

Questo processo continua iterativamente, espandendo i nodi in ordine di priorità basata sul valore 

f(n), fino a quando il nodo obiettivo non viene raggiunto o la open list diventa vuota, indicando che 

non esiste un percorso possibile. 

Funzionamento Algoritmo lato Device (GPU): 

L'implementazione dell'algoritmo A* sul lato device presenta sfide significative a causa della natura 

parallela delle GPU Per superare questa sfida, l'algoritmo è stato riprogettato per sfruttare il 

parallelismo offerto dalla GPU, adattando le strutture dati e le modalità di accesso alla memoria. 

Invece di utilizzare una singola open list, come avviene sul lato host, l'algoritmo su GPU impiega 

multiple open list, una per ciascun thread. Questo approccio riduce i conflitti di accesso e la necessità 

di sincronizzazione tra i thread, consentendo una gestione più efficiente delle operazioni in parallelo. 

All'inizio dell'algoritmo, vengono inizializzati gli array globali per i costi g(n) e f(n), assegnando a tutti 

i nodi un costo infinito, tranne che per il nodo iniziale, il cui costo g(n) è zero. Il nodo iniziale viene 

inserito nella open list del primo thread. 

L'algoritmo esegue un kernel principale, in cui ogni thread opera sulla propria open list. Ogni thread 

estrae il nodo con il valore f(n) minimo dalla sua open list. Se il nodo estratto corrisponde al nodo 

obiettivo, il thread imposta un flag globale per indicare che il percorso è stato trovato e l'algoritmo 

termina. 

Per ciascun nodo adiacente al nodo corrente, il thread verifica se il nodo è già presente nella closed 

list. Se non lo è, calcola un costo provvisorio tentativeGCost e utilizza operazioni atomiche, come 

atomicMin, per aggiornare in modo sicuro il costo g(n) globale del nodo adiacente. Se il costo viene 

aggiornato, vengono anche aggiornati il valore f(n) e il predecessore del nodo adiacente. Il nodo 

adiacente viene quindi inserito nella open list del thread, utilizzando una tabella di hashing e 

l’operazione atomica atomicCAS per evitare duplicazioni. 

Le operazioni atomiche sono essenziali per garantire la coerenza dei dati quando più thread 

potrebbero tentare di aggiornare gli stessi valori simultaneamente. Questo meccanismo evita race 

condition e garantisce che il costo minimo venga sempre registrato per ciascun nodo. 

L'uso di multiple open list e tabelle di hashing consente di distribuire il carico di lavoro tra i thread e 

di ridurre la necessità di sincronizzazione. 

Una volta che il nodo obiettivo è stato raggiunto, il percorso minimo può essere ricostruito risalendo 

l'array dei predecessori, come avviene nella versione host.  

  



Implementazione Algoritmo A-Star (GPU) 

Utilizzo di code parallele: 

Un aspetto essenziale dell'implementazione su GPU dell'algoritmo A* è la scelta del numero di code 

parallele (nQueues), che viene determinato dividendo il numero totale di nodi per un fattore k. Il 

fattore k rappresenta il numero di elementi che ogni coda può contenere. Selezionare il valore 

ottimale di k è necessario per bilanciare il carico di lavoro tra i thread della GPU e massimizzare le 

prestazioni. 

Impatto del Fattore k sulle Prestazioni 

Quando k è Grande (Poche Code, Molti Nodi per Coda): 

 Vantaggi: 

Ridotto Overhead di Sincronizzazione: Con un minor numero di code, c'è meno necessità di 

sincronizzazione tra i thread, poiché vengono accedute contemporaneamente meno strutture 

dati. 

Gestione Semplificata: Gestire un numero minore di code può semplificare il codice e ridurre 

l'overhead associato alla gestione delle code. 

 Svantaggi: 

Sottoutilizzo del Parallelismo: Avere meno code significa che un numero minore di thread è 

attivamente impegnato nell'elaborazione dei nodi, il che può portare a un sottoutilizzo delle 

capacità di elaborazione parallela della GPU. 

Aumento del Carico Computazionale per Thread: Ogni coda contiene più nodi, aumentando il 

carico computazionale sui thread responsabili di quelle code. 

Quando k è Piccolo (Molte Code, Pochi Nodi per Coda): 

 Vantaggi: 

Massimizzazione del Parallelismo: Aumentando il numero di code, più thread possono 

partecipare al calcolo, migliorando l'utilizzo delle risorse della GPU. 

Riduzione del Carico per Thread: Con meno nodi per coda, ogni thread ha meno dati da 

elaborare, il che può accelerare le computazioni individuali. 

 Svantaggi: 

Aumento dell'Overhead di Sincronizzazione: Più thread che accedono a risorse condivise 

possono portare a maggiore contesa e richiedere più sincronizzazione, introducendo latenza. 

Rallentamenti dati dalle Operazioni Atomiche: Un numero elevato di thread che eseguono 

operazioni atomiche su strutture dati condivise può rallentare le prestazioni a causa 

dell'aumentata contesa. 

 

 

 



Bilanciamento del Carico di Lavoro 

La scelta del valore ottimale di k comporta il bilanciamento tra la massimizzazione del parallelismo e 

la minimizzazione dell'overhead di sincronizzazione. L'obiettivo è trovare un valore che distribuisca 

uniformemente il carico di lavoro tra i thread della GPU, mantenendo i costi di sincronizzazione 

gestibili. 

Analisi benchmark per bilanciamento carico di lavoro su una griglia 5000x5000 con punto finale 

[4999,4999] 

K Grid size Parallel queues Time 

8 5000x5000 3125000 5 secondi 

64 5000x5000 390625 2.72 secondi 

256 5000x5000 97656 2.42 secondi 

1200 5000x5000 20833 2.39 secondi 

2656 5000x5000 9412 2.39 secondi 

4096 5000x5000 3051 2.39 secondi 

8192 5000x5000 3051 2.59 secondi 

16384 5000x5000 1525 4.32 secondi 

32250 5000x5000 775 7.99 secondi 

 

 

  



Accesso alle code parallele: 

Dato che ogni thread è associato a una specifica coda parallela basata sul suo identificatore (indice 

del thread). Ciò consente di mappare i thread alle code in modo deterministico, evitando conflitti tra 

thread che accedono alla stessa coda. 

L'indice della coda a cui un thread deve accedere è calcolato utilizzando l'indice globale del thread 

(idx) e il numero totale di code parallele (nQueues): 

 

Verifica nodi esistenti 

Nell'implementazione dell'algoritmo A* su GPU, è fondamentale evitare che lo stesso nodo venga 

inserito più volte nella coda di priorità (open list). La verifica della presenza di un nodo nella coda 

viene effettuata utilizzando una tabella di hashing (hashing table) associata a ciascuna coda 

parallela.  

L'indice nella hashing table viene calcolato utilizzando una funzione di hashing semplice, tramite il 

modulo dell'ID del nodo con la dimensione della tabella.  

 

Si utilizza poi l'operazione atomica atomicCAS (Compare And Swap) per verificare e inserire il nodo. 

 

Approccio dinamico nella scelta del numero di blocchi  

Nell'implementazione dell'algoritmo A* su GPU, la scelta del numero di thread per blocco e del 

numero di blocchi per grid è un fattore cruciale che influenza significativamente le prestazioni 

dell'algoritmo. Questa scelta deve essere adattabile e dinamica, variando in base alla dimensione del 

grafo, ossia al numero totale di nodi. Un approccio dinamico garantisce un utilizzo efficiente delle 

risorse della GPU, indipendentemente dalle dimensioni del problema da risolvere 

 

L'algoritmo si adatta automaticamente a grafi di qualsiasi dimensione senza necessità di modificare 

manualmente i parametri di lancio dei kernel. Così facendo si garantisce che un numero adeguato di 

thread sia lanciato per sfruttare al massimo le capacità della GPU, evitando sia la saturazione che il 

sottoutilizzo  



Test Case 

Hardware: 

Graphics Card: Nvidia RTX 3070 

 Architettura GPU: NVIDIA Ampere 

 Compute Capability: 8.6 

 Numero di CUDA Cores: 5.888 

 Numero di Streaming Multiprocessors (SMs): 46 

 Tipo di Memoria: 8 GB GDDR6 

Test per numero di nodi crescenti 

Seed : 1732652188 - Edge 100% 

K Start Goal Grid Time CPU Time GPU SpeedUp 

4 [0,0] [49,49] 50x50 0.0007821 0.0289075 0.025 

8 [0,0] [99,99] 100x100 0.0030995 0.0529844 0.06 

16 [0,0] [199,199] 200x200 0.0122685 0.0981872 0.12 

30 [0,0] [399,399] 400x400 0.058428 0.184969 0.27 

54 [0,0] [799,799] 800x800 0.318093 0.378232 0.83 

256 [0,0] [1999,1999] 2000x2000 3.70401 0.915175 4.06 

1200 [0,0] [4999,4999] 5000x5000 56.6827 2.391204 23.68 
 

 

Osservazione: 

L’algoritmo A-Star parallelo rispetto al sequenziale tende ad essere più veloce all’aumentare 

del numero di nodi coinvolti nel calcolo del percorso minimo.  Si nota, quindi , il decremento 

significativo nei tempi di esecuzione dell’algoritmo parallelo rispetto al sequenziale, che nel 

caso di una griglia pari a 5000x5000 risulta essere 23.68 volte più veloce di quello 

sequenziale. 

 



 

 

 

 

Seed : 1732652188 - Edge 70% 

K Start Goal Grid Time CPU Time GPU SpeedUp 

4 [0,0] [49,49] 50x50 0.0008414 0.0290196 0.027 

8 [0,0] [99,99] 100x100 0.0029005 0.0516374 0.056 

16 [0,0] [199,199] 200x200 0.010653 0.107484 0.1 

30 [0,0] [399,399] 400x400 0.0488351 0.183712 0.26 

54 [0,0] [799,799] 800x800 0.253115 0.381493 0.66 

256 [0,0] [1999,1999] 2000x2000 2.77191 0.946775 2.94 

1200 [0,0] [4999,4999] 5000x5000 40.5561 2.4074 16.89 

 

 

Osservazione: 

Si osserva che al decrementare del numero di connessioni e quindi anche al numero di nodi 

che probabilmente vengono visitati l’algoritmo sequenziale guadagna dei punti nel calcolo 

del percorso minimo. Si nota, inoltre, che se pur c’è un leggero miglioramento dell’algoritmo 

sequenziale rispetto al parallelo, quest’ultimo tende ad essere sempre più veloce con uno 

speedup nel caso di una griglia 5000x5000 pari a 16.89 volte quello sequenziale.  



Test per le diverse euristiche 

Seed : 1732652188 - Edge 70% 

Heuristic Grid Time 

Manhattan 5000x5000 2.44 

Euclidean 5000x5000 2.40 

Chebyshev 5000x5000 2.39 

Octile 5000x5000 2.44 

Hamming 5000x5000 2.41 

Osservazione: 

Non si nota nessuna differenza sostanziale nell’utilizzo delle varie funzioni euristiche in ambito 

parallelo. 

Test per distanze crescenti 

Seed : 1732652188 - Edge 100% 

Grid Start End Time CPU  Time GPU SpeedUp 

5000x5000 0,0 10,10 0.0109216 0.0346913 0.29 

5000x5000 0,0 100,100 0.0396831 0.0518886 0.76 

5000x5000 0,0 200,200 0.0576574 0.10007 0.5 

5000x5000 0,0 500,500 0.249433 0.243945 1 

5000x5000 0,0 1000,1000 1.37319 0.464296 2.97 

5000x5000 0,0 2000,2000 11.277 1.00284 11.2 

5000x5000 0,0 4999,4999 56.6827 2.391204 23.68 
 

 

Osservazione: 

Si nota che all’aumentare della distanza dal nodo iniziale al nodo di arrivo, il tempo di esecuzione 

dell’algoritmo parallelo rispetto a quello sequenziale tende a decrementare. Pertanto, se ne deduce 

che il numero di nodi da analizzare ricopre un ruolo fondamentale nel calcolo parallelo rispetto al 

sequenziale. 
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